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Abstract. The analogue of a Taylor series for fractal functions was derived by treatment of
anomalous dielectric relaxation in inhomogeneous media with chaotic structure within the frame of
the fractional integro-differential calculus technique. Analysis of a classical problem of polarization
of an inhomogeneous medium permitted us to establish the relationship between anomalous
relaxation and dimensionality of a temporal fractal ensemble which characterizes a non-equilibrium
state of a medium.

1. Introduction

Anomalous non-exponential relaxations have long been and still are a hot topic in the physics
of inhomogeneous media [1–24]. Broadly speaking, one may refer to three general relaxation
laws which are encountered in the experimental studies of complex systems:

(i) stretched exponential [10–13],

f (t) ≈ exp

[
−

(
t

τ

)α]
0 < α < 1, t > τ (1.1)

(ii) exponential–logarithmic [14],

f (t) ≈ exp

[
− B · lnα

(
t

τ

)]
(1.2)

(iii) algebraic decay [15],

f (t) ≈
(
t

τ

)−α

(1.3)

where α, τ and B are the appropriate fitting parameters.
Currently, there seems to be no quantitative microscopic theory for the cited laws

[1, 13, 20]; moreover, sometimes even the possibility of such a theory is denied [16]. The main
argument is that a spatial inhomogeneity (such as, e.g., a random distribution of impurities
within a matrix, or of interatomic spacings in amorphous semiconductors) will necessarily
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result in an extremely board range of microscopic transition rates. Hence, a spatial disorder is
expected to induce a temporal energetic disorder.

Another approach to the problem of anomalous relaxations makes use of fractal concepts
[3–9, 17–30]. In this case, the problem is analysed using the mathematical language of fractional
derivatives [18–30] based on the Riemann–Liouville fractional differentiation operator [31, 32],

Dα[f (t)] = 1

�(1 − α)

d

dt

∫ t

c

(t − τ)−αf (τ ) dτ (1.4)

where �(x) is the gamma function.
In spite of the reasonable success of the latter approach [3–9, 13–30], use of the fractional

derivative as represented by equation (1.4) makes difficult the interpretation of differentiation
procedures (for example, the non-zero value of a fractional derivative of a constant), as well
as their relevant to the assumed fractal ensemble. One may also note that so far the fractional
derivatives have been analysed in essentially phenomenological terms; moreover, the equations
based on fractional derivatives were constructed more by intuition (guessed) [3–9], rather than
obtained by derivation.

In this context, attempts to construct fractional derivatives and to clarify their relevance to
the assumed fractal ensemble are believed to remain feasible for the treatment of the problem
of anomalous relaxations.

In this paper the analysis of a classical problem of polarization of an inhomogeneous
medium permits us to establish the relationship between anomalous relaxation and
dimensionality of a temporal fractal ensemble which characterizes a non-equilibrium state
of a medium.

2. Derivative of fractal functions

In general, functions for which the total increment,

�hf (x) = f (x + �x) − f (x) (2.1)

can be represented as

�hf = A(�x)h + α(x)(�x)h (lim α(x) → 0, if (�x)h → 0) (2.2)

may be subdivided into two classes.

(i) h = 1; 0:f (x) belongs to the classical ensemble of differentiated functions;
(ii) h �= 1 (Hoelder index): f (x) belongs to the ensemble of functions for which it is not the

classical derivative but only the fractional derivative which exists [31, 32],

dhf (x)

dxh
= lim

�hf

[�x]h
[�x]h → 0. (2.3)

It can be inferred from equation (2.2) that the increment of the function log�hf

(in logarithmic metrics) should change linearly with the increment of an independent variable
log�x; hence, the standard differential calculus becomes applicable.

It is pertinent to recall here that fractals are defined, sometimes, as continuous functions
characterized by absence of derivatives (tangents) at any point, with a curvilinear cone serving
as a tangent to the fractal curve trajectory [33]. Apparently, Czech scientist Bolzano was the
first to study such continuous, non-differentiated functions around 1830 (the corresponding
manuscript was discovered only in 1920 [34]). Wiener’s process (i.e., Brownian motion)
and Kolmogorov’s turbulence (i.e., non-smooth vector field) may be cited as examples
of phenomena which can be described by continuous, non-differentiated functions (fractal
functions).
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The displacement y(t) of a Brownian particle in the former (Wiener) process is defined
as [35]

|y(t + �t) − y(t)| ≈ [�t]α (2.4)

whereas the singular velocity of the latter phenomenon (Kolmogorov’s turbulent flow) is
characterized by [36]

〈|��ν|p〉 ≈ [�x]p/3 (2.5)

where ��ν = �ν(x + �x)− �ν(x) is the difference of velocities between two point separated by
distance �x.

Assume that a function f (x) is defined on a fractal ensemble �f , of dimensionality
0 < df < 1, and that a point x = x0 and its vicinity belong to the ensemble �f . It is assumed
that f (x) = 0 if x < 0.

Let us divide a segment [x, x0] so that the length of each kth fragment at the nth scale
level is

�x
(n)
k = ξn(x0 − x) (2.6)

where ξ < 1 is the scaling factor (i.e., the index of similarity of the ensemble �f ).
The number of dividing points of the segment [x, x0] at the nth step is therefore

mn = 1, 2, . . . , jn+1 (2.7)

where j is the number of blocks (i.e., the branching index) involved in the construction of the
fractal unit cell (j = 2 for the Cantor ensemble).

Let the unit scale at the nth step be [�x]α ,

[�x
(n)
k ]α = 1

Nn

(x0 − x)α (2.8)

where N1 = j 1, . . . ;Nn = jn (that is, Nn = jn determines the number of fragments at the nth
scale level). This definition of the unit scale for the segment [x, x0] allows us to associate each
point (element) of fractal ensemble with a point of an ultrametric space whose geometrical
symbol may be represented by the Cayley tree [37–39].

It follows from equation (2.8) that limn→∞ xnk = 0; hence, �x
(n)
k is an infinitesimal

quantity (that is, the ultrametric space becomes continuous at n → ∞). From now on, the
increment of the function argument �x

(n)
k at the nth step will be denoted as �x (that is,

�x = �x
(n)
k ), while the corresponding coordinates of dividing points will be defined as

xk = x0 − k�x
(n)
k = x0 − k�x (2.9)

where k = 0, 1, 2, . . . , jn+1. Recognition of fractal dimensionality as df = α implies, further,
(1/ξ)nα = Nn and �x = (x0 − x)/(1/ξ)n, [�x]α = [(x0 − x)α/Nn], (1/ξ)nα = jn = Nn.

Consider an increment, �αf (x) = f (x0)− f (x0 −�x); then the kth increment �k
αf (x)

will be determined through binomial coefficients with alternating signs (cf appendix A),

�k
αf (x0) =

m∑
k=0

[−1]kCk
n(f (x0 − k�x) Ck

m = m!

k!(m − k)!
m = jn+1 (2.10)

and the function f (x) in the vicinity of point x0 will be

f (x) = (1 − �α)
mf (x0). (2.11)

Using equations (2.6)–(2.11), one can derive an analogue of the Taylor series for function
f (x) (cf appendix A):

f (x) =
∞∑
k=0

ak(x0 − x)αk (2.12)
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where ak = (j k/k!)f (αk)(x0), and f (αk)(x0) defines the fractional derivative of the kth order
of the fractal function f (x) at the point x = x0 as

f (αk)(x0) = lim
�x→0

�k
αf (x0)

([�x]α)k
. (2.13)

The coefficients of the series (2.12) depend both on the fractional derivative of kth order
of the fractal function f (x) at the point x = x0 and on the branching index j of the fractal
ensemble of which the function f (x) is specified.

It follows from equation (2.13) that the first derivative (k = 1) is

dαf (x0)

dxα
= f (α)(x0) = lim

[�x]α→0

�αf (x0)

[�x]α
= lim

[�x]α→0

f (x0) − f (x0 − �x)

[�x]α
; (2.14)

thus, equation (2.3) is recovered.
In a similar way, one can also specify the integral of function f (x) on fractal ensemble

�f as a limit of integral summation (cf appendix B),∫ b

a

f (x)[dx]α = lim
(n→∞)

∞∑
k=1

f (x0 − (k − 1)�x)[�x]α. (2.15)

For convenience in the further use of the fractional derivative, let us introduce the
differentiation operator Dα ,

Dαf (x) = dαf (x)

[d(x − a)]α
= lim

�x→0

f (x) − f (x − �x)

[�x]α
0 < α � 1. (2.16)

The integration operator Iα will be defined as

Iαf (x) =
∫ x

−∞
f (x)[dx]α (2.17)

so that Iα = D−α , i.e.,

Iαf (x) = D−αf (x) =
∫ x

−∞
f (x)[dx]α. (2.18)

Consider the function

#(x) = 1

�(α)

∫ x

−∞
(x − t)α−1f (t) dt (2.19)

It can be shown that

Dα#(x) = f (x); (2.20)

hence,

D−αf (x) =
∫ x

−∞
f (x)[dx]α = #(x). (2.21)

Thus,

D1−αf (x) = d

dx
#(x) (2.22)

or

Dβf (x) = 1

�(α)

d

dx

∫ x

−∞
(x − t)−βf (t) dt (2.23)

where α + β = 1, 0 < α � 1 and f (x) = 0, if x < 0.
Summarizing, the developed fractional–integral concepts establish the link with the

procedure of construction of the fractal ensemble which determines the function f (x).
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3. Dielectric relaxation

The potential of fractional derivatives will become evident, and the relationship between the
exponent α in equation (1.1)–(1.13) and the fractal dimensionality df will be established, in
the subsequent treatment of the classical problem of polarization P(t) of a dielectric medium
(which is, in fact, equivalent to the general problem of relaxation of internal parameters of a
non-equilibrium phase).

Assume that P(t) contains two contributions [1, 40],

P(t) = P0 + P1(t) (3.1)

where the former one (P0 = χ0E) varies exactly (at least, with negligibly small retardation) as
the applied field E, while the latter time-dependent one, P1(t), is retarded. Let P ∗ = χ∞E be
the upper limit (at fixed E); then the instantaneous rate of approach of the contribution P1(t)

to this limit will be higher, the larger the amplitude (χ∞E−P1(t)). Hence, the corresponding
relaxation equation may be written as [39]

dP1(t)

dt
= 1

τ
(χ∞E − P1(t)) (3.2)

where τ is the relaxation time. After integration, one derives from equation (3.2):

P(t) = P0 + P1(t) =
[
χ0 + χ∞

(
1 − exp

(
− t

τ

))]
E (3.3)

(for the field fixed at E), and

P(ω) = P0 + P1(ω) = [χ0 + χ∞/(1 + iωτ)]E (3.4)

(for the field alternating as E = E0 eiωt ).
Therefore, the dielectric permittivity of a medium may be defined, finally, as [40]

ε = ε∞ +
ε0 − ε∞
1 + iωτ

(3.5)

where

ε∞ = lim
ω→∞ ε ε0 = ε|ω=0.

Let us consider now the non-equilibrium state of a fractal-like medium assuming that this
non-equilibrium state is characterized by many events such that each next event is separated
by a certain time interval τi from a previous event. In this case, some intervals will be
eliminated from a continuous process of system evolution by a definite law. Assume that
such a process is caused by a temporal fractal state of dimensionality df ; the corresponding
relaxation equation can be written as

DαP1(t) = 1

τ
(χ∞E − P1(t)) (3.6)

and rearranged as

[1 + τDα]P1(t) = χ∞E (3.7)

where α = df .
The latter equation (3.7) can be solved using the Laplace transform (cf appendix C),

[1 + (τp)α]P1(p) = χ∞E

p
(3.8)

which yields

P1(p) = χ∞E

p

1

1 + (τp)α
. (3.9)
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In so far as
1

1 + (pτ)α
= (pτ)−α

1 + (pτ)−α
=

∞∑
n=0

(−1)n(pτ)−α(n+1) (3.10)

the solution of equation (3.9) in the domain of originals will have the following form:

P1(t) = χ∞E

∞∑
n=0

(−1)n(t/τ )α(n+1)

�[α(n + 1) + 1]
(3.11)

where �(x) is the gamma-function. Therefore,

P(t) = P0 + P1(t) =
[
χ0 + χ∞

∞∑
n=0

(−1)n(t/τ )α(n+1)

�[α(n + 1) + 1]

]
E. (3.12)

After substitution of α = 1 into equation (3.12), equation (3.3) may be recovered; in fact,

P(t) =
[
χ0 + χ∞

∞∑
n=0

(−1)n(t/τ )(n+1)

�(n + 2)

]
E =

[
χ0 + χ∞

(
1 − exp

(
− t

τ

))]
E (3.13)

(in the derivation, the standard equation (3.14) was used):
∞∑
n=0

(−1)n(z)n

�[(n + 1)]
= exp(−z) z = t

τ
. (3.14)

Thus, the cross-over from a strictly exponential to an anomalous relaxation pattern can
be associated with change of a continuous distribution of relaxation times (α = 1) into a
fractal-like one (0 < α = df < 1).

If follows from equation (3.12) that

P(t) ≈
[(

1 − exp

(
−

(
t

τ

)α))]
E (3.15)

which can be compared with equation (1.1)–(1.3).
In the case of alternating field, the Fourier transform of equation (3.7) yields

(cf appendix C)

P(ω) = �χ0 + χ∞/(1 + iωτ)α�E (3.16)

and the dielectric permittivity will be

ε = ε∞ +
ε0 − ε∞

1 + (iωτ)α
. (3.17)

The real Re ε(ω) and imaginary Im ε(ω) parts of the total dielectric permittivity in
equation (3.17) are, respectively,

Re ε(ω) = ε0

[
γ +

(1 − γ )[1 + (ωτ)α cos(πα/2)]

1 + 2(ωτ)α cos(πα/2) + (ωτ)2α

]
(3.18)

Im ε(ω) = ε0

[
(γ − 1)[1 + (ωτ)α sin(πα/2)]

1 + 2(ωτ)α cos(πα/2) + (ωτ)2α

]
(3.19)

therefore, the dielectric loss tangent will be

tan δ = (γ − 1)

[
(ωτ)α

1 + 2(ωτ)α cos(πα/2) + (ωτ)2α

]
(3.20)

where γ = ε∞/ε0.
Equations (3.18)–(3.20), respectively, were used to construct the plots of the real,

Re ε(ω)/ε0 (figure 1), and of the imaginary, Im ε(ω)/ε0 (figure 2), parts of complex dielectric
permittivity, as well as of the dielectric loss tangent tan δ (figure 3) as a function of logωτ for
a medium with γ = ε∞/ε∞ = 10. As can be easily verified, the relaxation spectrum pattern
strongly depends on the dimensionality of the temporal fractal ensemble α = df .
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Figure 1. Disperse dependence Re ε/ε0 at the different values of parameter α.

Figure 2. Disperse dependence Im ε/ε0 at the different values of parameter α.

Figure 3. Disperse dependence tan δ at the different values of parameter α.

4. Conclusions

The potential of the fractional derivative technique is demonstrated on the example of dielectric
relaxation in a non-homogeneous medium. This approach allows for a simple and transparent
analysis of the dependence of the pattern of an anomalous relaxation spectrum on the
dimensionality of temporal fractal ensemble.
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Appendix A. Analogue of Taylor series for a fractal function

Consider the increment,

�αf (x) − f (x0) − f (x0 − �x); (A.1)

hereafter, this increment will be called the first difference. Hence, the second difference
�2

αf (x) will be defined as the squared operator �α ,

�2
αf (x) = �α(�αf (x)) = �αf (x0) − �αf (x0 − �x)

= f (x0) − 2f (x0 − �x) + f (x0 − 2�x). (A.2)

In a similar fashion, the third difference will be

�3
αf (x) = f (x0) − 3f (x0 − �x) + 3f (x0 − 2�x) − f (x0 + 3�x).

Thus, the kth difference �k
αf (x) will be determined through the binomial coefficients

with alternating signs,

�k
αf (x0) =

m∑
k=0

[−1]kCk
nf (x0 − k�x) Ck

m = m!

k!(m − k)!
m = jn+1. (A.3)

As follows from the definition of �α ,

f (x0 − �x) = f (x0) − �αf (x0) = (1 − �α)f (x0) (A.4)

where 1 is defined as a symbol of an identical operator. Therefore, one can write

f (x − 2�x) = (1 − �α)f (x0 − �x) = (1 − �α)
2f (x0). (A.5)

In a general case,

f (x0 − k�x) = (1 − �α)
kf (x0) (A.6)

therefore,

f (x) = (1 − �α)
mf (x0) (A.7)

in so far as, according to equation (2.6),

x = x0 − m�x where m = jn+1.

Using the binomial expansion for (1 − �α)
k , one obtains

f (x) =
m∑

k=0

[−1]kCk
m�

k
αf (x0). (A.8)

Transform the common term in the r.h.s. of equation (A.8) as

Ck
m�

k
αf (x0) = Ck

m

�k
αf (x0)

([�x]α)k
([�x]α)k = m(m − 1) . . . (m − k + 1)

k!

�k
αf (x0)

([�x]α)k
(x0 − x)αk

Nk
n

= Pmk

�k
αf (x0)

k!([�x]α)k
(A.9)
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where

Pmk = m(m − 1) . . . (m − k + 1)

Nk
n

k = 1, 2, . . . , m. (A.10)

Hence, equation (A.8) can be rewritten as

f (x) =
m∑

k=0

[−1]k
Pmk

k!

�k
αf (x0)

([�x]α)k
(x0 − x)αk. (A.11)

Assuming finite k and infinite m (m → ∞), one arrives at the analogue of Taylor’s series
for function f (x),

f (x) =
∞∑
k=0

jkf (αk)(x0)

k!
(x0 − x)αk

or

f (x) =
∞∑
k=0

ak(x0 − x)αk (A.12)

where αk = (j k/k!)f (αk)(x0) and f αk(x0) is specified as

f αk(x0) = lim
n→∞

�k
αf (x0)

([�x]α)k
. (A.13)

Appendix B. Fractional integral

Consider and integral sum on the segment [a, b] belonging to �f ,∑
f

= [f (x0) + f (x0 − �x) + · · · + f (x0 − (n − 1)�x)][�x]α

=
n∑

k=1

f (x0 − (k − 1)�x)[�x]α b = x0 − (n − 1)�x (B.1)

where [�x]α is defined by equation (2.6). The integral will correspond to the limit of the
integral sum (B.1),

lim
∑

f
n→∞

(�lxα→0)

= I (B.2)

that is, ∫ b

a

f (x) [dx]α = lim
∑

f
n→∞

(�x→0)

(B.3)

or ∫ b

a

f (x)[dx]α = lim
n→∞

(�x→0)

∞∑
k=1

f (x0 − (k − 1)�x)[�x]α. (B.4)

Appendix C. Fourier and Laplace transforms

The Fourier transform is defined as

f̄ (k) = 1√
2π

∫ ∞

−∞
f (x) eikx dx (C.1)

f (x) = 1√
2π

∫ ∞

−∞
f̄ (k) e−ikx dk. (C.2)
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In the case of a fractional derivative, the Fourier transform will be

dαf (x)

[dx]α
= (ik)αf̄ (k) (C.3)

where
dαf (x)

[dx]α
= 1√

2π

∫ ∞

−∞
(ik)αf̄ (k) e−ikx dk (C.4)

The Laplace transform is defined as

f̄ (p) =
∫ ∞

0
f (x) exp(−px) dx (C.5)

with the original function f (x)

f (x) = 1

2π i

∫ a+i∞

a−i∞
f̄ (p) exp(px) dp Rep � a. (C.6)
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